
Journal of Chromatography, 285 (1984) I-18 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

CHROM. 16,395 

MEASUREMENT AND USE OF RETENTION DATA FROM HIGH-PER- 
FORMANCE GRADIENT ELUTION 

CONTRIBUTIONS FROM “NON-IDEAL” GRADIENT EQUIPMENT 

M, A. QUARRY*, R. L. GROB* and L. R. SNYDER**,* 

Biomedical Products Department, E. I. du Pont de Nemours & Co., Concord Plaza, Wilmington, DE 19898 
(U.S.A.) 

(Received October 25th, 1983) 

SUMMARY 

Equipment for high-performance liquid chromatographic (HPLC) gradient 
elution generally distorts the gradient selected by the operator, which in turn affects 
the retention of solutes separated by gradient elution. A theoretical analysis describes 
these gradient distortions as a function of equipment design and operating condi- 
tions. Comparisons of theory with experimental data show generally good agreement. 
As a result, it is now possible to select gradient conditions for minimal gradient 
distortion, or to correct for the effect of gradient distortion on solute retention. This 
will be shown in later papers to allow the use of gradient elution in new ways for 
more efficient method development and optimization of separation by HPLC. 

INTRODUCTION 

Gradient elution is widely applied in liquid chromatography to overcome cer- 
tain general separation problems and resolve more efficiently certain kinds of samples 
(e.g., refs. 1 and 2). Its applications include (1) optimal resolution and detection of 
compounds present in mixtures with a wide retention range, (2) selective adjustment 
of mobile-phase composition and selectivity for different parts of the chromatogram3 
and (3) rapid method development for isocratic separation by high-performance 
liquid chromatography (HPLC) (e.g., refs. 2,4 and 5). Gradient elution is particularly 
important for the separation of macromolecules such as protein@. 

In these various applications of gradient elution, the relationship between sam- 
ple retention and experimental conditions can be of major importance. A knowledge 
of this relationship allows the optimal use of gradient elution in separations that 
require this technique. This same theory of gradient retention vs. operating conditions 
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also allows the use of gradient runs to predict isocratic retention accurately as a 
function of the experimental condition@, permitting more rapid and convenient strat- 
egies for optimizing isocratic separations. 

The present theory of retention in gradient elution’ assumes that the gradient 
shape selected by the chromatographer is in fact delivered by the equipment to the 
head of the column. Actual gradients are invariably altered by the equipment and 
hence differ from the selected gradient, leading to differences in band retention for 
experimental vs. ideal gradient systems. Several workers have discussed the ability of 
different types of equipment to provide near-ideal gradients (e.g., refs. 1, 2 and 7- 
10). However, no gradient systems are perfect in this respect, particularly for a wide 
range in potential applications (e.g., with columns of ultra-small volumeli). If it is 
accepted that present equipment generally yields gradients that are non-ideal to some 
degree, and if we desire to minimize these effects or correct for their contribution to 
the measured gradient retention times, then we require a better understanding of the 
relationship between gradient shape and equipment design and separation conditions. 
This is the aim of this paper. In the following paper12 we present a similar analysis 
of gradient distortions that arise within the column, rather than as a result of non- 
ideal gradient equipment. Together these two papers provide a basis for (1) the more 
accurate use of theory to predict retention in gradient elution as a function of ex- 
perimental conditions and (2) the use of gradient runs to obtain retention data for 
corresponding isocratic systems. Subsequent papers will show that this allows a con- 
siderably expanded use of gradient elution in diverse applications of the technique. 

THEORY 

The theory of retention for gradient V.X isocratic elution (same column, mobile 
phases} is given for linear solvent strength (LSS) conditions* in refs. 1 and 6. The 
latter treatment assumes ideal gradients, i.e., gradients whose shapes are not dis- 
turbed by the equipment. We shall first review this theory for the case of ideal gra- 
dients, then we shall examine contributions to retention as a result of gradient non- 
ideality. A glossary of symbols used in this paper is given at the end of the following 
paper’ *. 

Ideal gradients 
Under LSS conditions the mobile phase entering the column at time twill have 

a composition such that the solute capacity factor, k’, in isocratic elution (same 
mobile phase) will be given by 

log k’ = log k. - b(t/t,) (1) 

where k. refers to the value of k’ at the beginning of the gradient (t = 0), to is the 
column dead-time and b is a constant for the solute in question**. In reversed-phase 

* LSS gradient systems generally provide optimal separations and are easily described mathemat- 
ically. 

** LSS gradients have also been defined as those where b is constant for all solutes, which in turn 
yields optimal or equivalent resolution throughout the chromatogram. The latter condition and the validity 
of eqn. 1 may be incompatible in a given gradient separation. Here we shall use the term LSS to mean 
only that eqn. 1 applies. 
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HPLC systems, isocratic retention data are given (approximately) as a function of 
mobile phase composition by 

log k’ = log k, - S cp (2) 

where k, is the value (usually by extrapolation) for water as mobile phase, 9 is the 
volume fraction of organic solvent in the mobile phase and S is a constant for a given 
solute and organic solvent. If 9 varies linearly with time t during the gradient, 

9 = ‘?O + (qf - VO) (t/tG) (3) 

then eqn. 1 is fulfilled and we have a LSS gradient. Here cpo and rpf are the values of 
9 at the beginning and end of the gradient and tG is the gradient time during which 
9 is varying. We can also derive the constant b in eqn. 1 from the above relationships: 

b = SAq t&G (4) 

where A9 = qf - cpo; for a O-100% gradient, A9 = 1. Eqns. l-3 can be generalized 
to other HPLC systems by replacing 9 with some function f(9) that is linear in log 
k’. Examples of f(9) are the solvent-strength parameter E’ for adsorption chroma- 
tography, or log(C*) in ion-exchange chromatography; (C’) refers to the concen- 
tration of ionic counter ion in the mobile phase’. 

For solutes not exhibiting size-exclusion effects2*6, retention in LSS gradient 
elution with an ideal gradient is given by1 

43 = (to/b) log(2.3kob + 1) + to (5) 

where t, is the retention time of the solute under these conditions. When solute 
molecules are partially excluded from the particle pores by size-exclusion effects, eqn. 
5 can be written as6 

t, = (to/b) W2.3kob(tseclto) + 11 + he, (6) 
where tsec is the observed value of to for the solute in question, while to applies to 
some other solute that is small enough to have access to the total pore volume of the 
packing particles (no size exclusion effect). Eqn. 6 is mainly of interest with regard 
to retention thermodynamics (as in ref. 6), rather than isocratic vs. gradient elution. 
We shall work with eqn. 5 in the remainder of this paper. 

Causes and consequences of gradient nonideality 
Gradient non-ideality can arise from the following effects: (1) solvent mispro- 

portioning and flow-rate errors due to pump design or faulty operation of the gra- 
dient system; (2) gradient delay due to the volume of the gradient mixer and con- 
necting tubing, pump cylinder, etc.; (3) gradient distortion due to dispersion of the 
gradient in the mixer, connecting tubing, pump, etc. Gradient nonideality as a result 
of solvent misproportioning or flow-rate errors can give rise to gradients as in Fig. 
la, where the desired (ideal) gradient is shown by the dashed curve and the actual 
(non-ideal) gradient by the solid curve. Such gradients are typical of older designs of 
HPLC pumps, specifically those employing high-pressure mixing as discussed in ref. 
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10 and documented more recently by Engelhardt and Elgass l 3. In our experience this 
is less of a problem with many newer pumps that employ low-pressure mixing via 
proportioning valves for each solvent of the gradient. However, even with pumps of 
the latest design, compressibility effects commonly lead to fluctuations in flow-rate 
of f l-2% throughout the gradient, particularly when operating at higher pressures 
(150-300 bar) and with solvents whose mixtures exhibit large changes in viscosity 
over the gradient. 

Gradient delay as a result of the volume of the system from mixer to column 
inlet is illustrated in Fig. lb. In the simplest case, the delay time, tD, is simply added 
on to the value of t, from eqn. 5 (see below). However, for solutes eluting early in 
the gradient, the volume, vn, of initial mobile phase (solvent A in the gradient A/B) 
associated with this gradient delay can cause pre-elution of the solutes; i.e., their 
partial migration along the column before the gradient arrives at the column inlet. 
This will result in smaller values of solute retention (ts) relative to the case of no 
pre-elution (eqn. 10, below). 

Gradient distortion as a result of dispersion within the system yields rounded 
gradients as in Fig. lc. The degree of distortion at any time during the gradient can 
be characterized by the concentration difference, a~,, between actual and ideal gra- 
dients, as illustrated in Fig. Id. This difference, a~,, in turn affects values of tE. 

Gradient misproportioning (Fig. la) is further discussed under Results and 
discussion, where our experience with the DuPont Model 8800 gradient system is 
reviewed. Gradient delay and its effect on solute retention are analyzed theoretically 
in the immediately following section and gradient dispersion is treated in the section 
after that. 

In this and the following paper l 2, it is convenient to express deviations between 
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Fig. 1. Various hypothetical gradient distortions. - -, Ideal gradient; -, actual gradient. (a) Gra- 
dient misproportioning; (b) gradient delay; (c) gradient dispersion; (d) same as (c), showing difference in 
concentrations cp W. ideal gradient (a~,,,). 
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experimental and calculated (eqn. 10) values of t, in terms of the value of cp at the 
time of elution of the band. The resulting difference in cp values, 69, is given by 

6P = [(f&t - (&Llcl WplG3) 
(7) 

Experimental values of 6~ are in turn determined by the sum of the contributions, 
6qi, from individual causes of gradient nonideality: 

i 
6q = CaVi P-4 

Finally, values of 6qi are related to the average cp value for elution of the solute 
band. In the following manner, we can approximate the latter quantity (p by the value 
of 9 at the band center when the band has migrated half-way along the column: 
From ref. 1, the value of t, for elution of the band to the column midpoint is given 

by 

(f&-J5 = (to/b) log(l.15krJb + 1) + 0.9, (8) 

The value of cp at the column midpoint at the time (tg)0.5 is then related1 to the latter 
quantity by 

@ = (b/t,) [(f&0.5 - 0.5tOl + VO (9) 

Gradient delay and solute pre-elution 

Gradient delay without solute pre-elution (see Fig. lb) simply adds the quan- 
tity tD to tg from eqn. 5: 

t, = (to/b) 10@.3kOb + 1) + to + tD (10) 

If k. is not very large (< 50) and/or b/t0 > 1, elution of solute bands can occur 
during passage of the volume vn = tDF through the band after it is injected on to 
the column (F is flow-rate of the mobile phase). We can calculate the effect of solute 
pre-elution on t, as follows. The fractional migration, x, of the solute band along the 
column during pre-elution is given by* 

X = t&ok0 (11) 

The retention time, t,, for the solute is 

t, = tD + t,, + t; (12) 

where t; is the quantity t, - to for a column of length 1 - x times the actual column 
length (other conditions being the same). For a column of fractional length 1 - x, 
values of to (equal t6) and b (equal bx) relative to values for the original column can 

* Note that if tD = t&o, x = 1 and the retention time, TV, of the band is then t&o plus to for the 
column dead volume. 
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be calculated: f$ = (1 - x)to and b” = (Sdcp/to)tg = (1 - x)b. These latter quantities 
can be substituted for to and b, respectively, in eqn. 10: 

c = (to/b) log[2.3kob(l - X) + 1] (13) 

Combination of eqns. 12 and 13 then yields a final expression for t, with gradient 
delay and pre-elution accounted for: 

t, = (to/b) log[2.3k,b(l - x) + 1] + tn + to (14) 

Eqn. 14 can be further simplified to give an insight into the conditions required for 
significant pre-elution to occur. Let quantities a and c be defined as a = 1 + 2.3kob 
and c = 2.3kob. Then eqn. 14 can be written as 

te = (to/b) lO& - CX) + tD + to 

The change in t, with x (when x & 1) is 

(dt$dx) = - toc/2.3ab (16) 

The quantity 6p, (6q,i as a result of pre-elution) is 

(17) 

which for small values of x is (eqns. 16 and 17) 

&p, = (Ap/tG) (- tocx)j2.3ab 08) 

Substituting the above expressions for a and c into eqn. 18 gives finally (with eqns. 
4 and 11) 

6% = btD/Sto(l + 2.3kob) 09) 

For values of kob > 3, the latter expression is well approximated by 

h* = (ACol2.3kob) (tD/tG) 

= (1/2.3Sko) (t&o) = (v&‘m)/2.3sko (20) 

where V,,, is the dead volume of the column. For example, consider the separation 
of a sample of molecular weight 200-500 with a methanol- or acetonitrilewater 
gradient (S z 3), a gradient system similar to that used here (vn = 5.5 ml), and a 
15 x 0.46 cm I.D. column (I’,,, x 2 ml). In this case the quantity 6q, is equal to 
about 0.4/ko. Therefore, an error in t, equivalent to 6q, = 0.005 requires a minimum 
value of k. equal to 80. Smaller values of k. give rise to proportionately larger errors 
in t, (eqn. 20). Likewise, columns of smaller volume (smaller V,) or with larger values 
of tD also yield proportionally larger errors. 
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,Gradient dispersion 
In high-pressure gradient devices’ the two solvents A and B are combined in 

a mixer of volume VM, and the contents of the mixer are fed to the column inlet. If 
the volume of the mixer is large relative to the volume of tubing that connects the 
mixer and the column, the composition of the mobile phase entering the column can 
be approximated by the composition rp within the mixer. This is the simplest case to 
analyze, and we shall examine it first. We shall assume a linear gradient as in Fig. 1, 
with the mobile phase composition changing from water (cp = 0) to pure organic (cp 
= l), i.e., Acp = 1. We shall consider other situations (Arp < 1) later. The compo- 
sition cpr of mobile phase (total) fed to the mixer can be given by 

vi = (t/fG) = (v/v,) (21) 
A mass-balance equation can be written for the amount of organic solvent entering 
and leaving the mixer at any time: 

(v/v,) dI’ - cpdV = vhl drp (22) 

The first term in eqn. 22 represents the influx to the mixer, the second term is the 
effluent from the mixer and the last term represents the increase in organic solvent 
within the mixer. Integration of eqn. 22 yields 

q = c e-“‘“M + (v - vM)/vG (23) 

The constant C can be evaluated from the boundary condition cp = 0 when V = 0: 
C = vM/l/q. Therefore 

Cp = (vM/vG) e-“‘“M + (v - vkl)/vG (24) 

The quantity 6rp, (see Fig. Id) is then 

?I@,, = (vEA/vo) e-v’vM (25) 

Eqn. 25 applies only for V $ 0, because for V c 0 (before the gradient starts) the 
value of vi is zero for all values of V, and eqn. 21 does not apply. That is, end effects 
limit the range of applicability of eqn. 25. These end effects can be eliminated by 
integrating the case corresponding to cpi = OforV<Oandcp,= V/VoforV>O. 
The resulting integration was carried out for various model cases (varying values of 
VM/VG) by numerical means, and it was confirmed that eqn. 25 is accurate for V Z 
VM, but not for V < VM. However, for the latter case (V < VM) the results of 
numerical integration could be fit to an empirical expression: 

6q, = (v&72 vG) e2’S’v-vd’v~ (26) 

When V approaches VG, eqn. 25 again fails. However, the end of the gradient is 
symmetrical compared with its beginning, in the following sense: Sq,,, for a value V 
in the first half of the gradient = - 6q,,, for value (V - VG) in the second half. 
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Thus, 6~, = 0 near the middle of the gradient and 6~, at V = VM equals 
- 6~, at Y = (Vo + V,>. Examples of values of a~,,, calculated in this fashion are 
shown in Table I, for V,/Vo G 0.20. Fig. 2 shows calculated gradient shapes (solid 
curves) at the beginning and end of the gradient for vM/VG = 0.05 (a), 0.1 (b) and 
0.2 (c). The dashed curves in each instance show the shape of the ideal (undistorted) 
gradient after correction for dwell time. 

For larger values of VM/ Vo and more severely distorted gradients, eqns. 25 and 
26 no longer apply,because end effects (at L’ = VM and YM + vo) now affect the 
entire gradient. Values of &p, in Table I for these cases (V,/Vo > 0.2) were deter- 
mined experimentally, after confirming that eqns. 25 and 26 describe experimental 
gradient shapes within experimental error for VM/VG < 0.2. 

Values of &p, are dependent only on V,/ V,, V/V, and Aq, as indicated in 
Table I. This can be seen from the form of eqns. 25 and 26 and the preceding dis- 
cussion. For an example of the calculation of &,, see Appendix I in the following 
paper’*. 

More complex gradient systems 
The preceding discussion of gradient dispersion assumes that only the gradient 

TABLE I 

CALCULATED ERROR IN ACTUAL GRADIENTS AS A FUNCTION OF ?‘, V, AND Vc (DUE 
TO GRADIENT DISPERSION) 

Calculated by combination of eqns. 25,26 plus numerical integration and experimental gradient data (see 
text). 

(V- vdlvo* Error in cp (dq,/Aq) for various values of VM/Vc 

0.8 0.4 0.2 0.1 0.05 0.02 0.01 

-0.2 0.006 

-0.1 0.021 0.000 

-0.05 0.039 0.011 0.000 
0.0 0.34 0.119 0.074 0.037 0.018 

0.05 0.33 0.106 0.057 0.022 0.007 

0.10 0.31 0.092 0.045 0.014 0.003 
0.15 0.29 0.082 0.035 0.008 0.001 
0.20 0.27 0.071 0.027 0.005 0.000 
0.30 0.22 0.058 0.016 0.002 0.000 
0.40 0.17 0.050 0.010 0.001 0.000 
0.50 0.11 0.043 0.006 0.000 0.000 
0.60 0.05 0.026 0.004 0.000 0.000 
0.70 -0.02 -0.002 0.000 0.000 O.ooO 
0.80 -0.08 -0.040 -0.004 0.000 0.000 
0.85 -0.11 -0.065 -0.012 0.000 0.000 
0.90 -0.15 -0.090 -0.021 0.000 0.000 
0.95 -0.19 -0.120 -0.039 -0.011 0.000 
1 .oo -0.22 -0.150 -0.074 - 0.037 -0.018 
I .05 -0.057 - 0.022 - 0.007 
1.10 -0.045 -0.014 --0.002 
1.20 - 0.027 -0.005 -0.000 
1.40 -0.010 0.001 0.000 

l V, = V, when only the mixing vessel contributes to VD. 

0.000 
0.007 
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0.000 
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0.000 

0.000 

0.000 
0.000 

0.000 

0.000 

0.000 
0.000 

0.000 
-0.007 

-0.002 

0.000 

0.000 

0.000 

0.000 
0.004 
O.GQO 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

-0.004 

0.000 

0.000 

0.000 
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mixing chamber contributes to gradient nonideality. In modem low-pressure mixing 
systems there are several elements that are individually similar to mixing chambers 
in being able to distort the shape of the final gradient. Thus, in addition to the 
low-pressure mixer, there are the pump cylinders, connecting tubing that joins the 
mixer, pump and column, plus in-line frits and filters. Each of these elements con- 
tributes additionally to the dispersion of the gradient curve. 

For the case of several well-mixed vessels in series, the quantity V& is equal to 
the dispersion variance of the total system r. The resulting overall value of FM for a 
series of mixing vessels i of volume Vi is then 

n 

The corresponding delay volume, Vn, is given by 

(27) 

Therefore, a total (actual) volume Vn apportioned among more than one mixing 
vessel yields the same delay volume (Vn) as for a single mixing vessel, but a lesser 
dispersion of the actual gradient (smaller value of V,). 

In the case of connecting tubing, the corresponding dispersion volume, Vc 
(equivalent to V,), can be expressed by the Taylor equationlS as 

v’c = V, df F/96 D, (29) 

where V, is the actual volume of liquid contained within the tube (equal to nL 
d;2/4), d, is the inner diameter of the tube, F is the flow-rate of mobile phase through 
the tube and D, is the average diffusion coefficient of solvents within the mobile 
phase. Typically, D, will be about 5 a 10e5 cm’/sec, and v’, will be about 0.002-0.04 
ml2 per meter of tubing when dl = 0.030 in. (0.08 cm), for flow-rates of 0.24 ml/min. 
Eqn. 29 overestimates Vc for higher flow-rates and shorter lengths of tubingi6, but 
this effect can be ignored for typical gradient systems. 

In the case of well designed frits and filters, which can be described as packed 
mixing vessels, the value of VM will typically be much smaller than the volume of 
each such element, and the dispersion within these devices can be ignored in com- 
parison with the dispersion of the gradient mixing chamber. 

EXPERIMENTAL 

Equipment 
The HPLC system was a DuPont 8800 liquid chromatograph (DuPont, Wil- 

mington, DE, U.S.A.) equipped with a Model 860 fixed-wavelength (254 nm) photo- 
metric detector and heated column compartment. A mixing chamber of current 
(1983) design was used, and a Mott CRT 6150 in-line filter (Mott Metallurgical, 
Farmington, NM, U.S.A.) was added. The recorder was an HP 7131A strip-chart 
recorder (Hewlett-Packard, San Diego, CA, U.S.A.). 

Reagents 
Solvents were HPLC-grade tetrahydrofuran (THF) and acetonitrile (J. T. Bak- 
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er, Jackson, TN, U.S.A.). A Mill&Q system with Organex-Q cartridge (Millipore, 
Bedford, MA, U.S.A.) was used for water purification. Solvents were degassed by 
helium sparging, prior to and during use. 

Chromatographic conditions 
Flow-rates were measured at various mobile phase compositions using a cal- 

ibrated volumetric flask. The maximum flow-rate error was 2% over the gradient 
range studied. To determine the shape of gradients delivered to the column, analog 
gradient curves were obtained by adding a low concentration of a UV absorber 
(acetone or toluene) to one portion of solvent. Supplemented and unsupplemented 
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Fig. 2. Experimental VS. calculated (eqns. 25 and 26) gradients for acetonitrile-water mobile phase. (a) 
Vo = 40 ml, VM/VG = 0.05; (0,2.0 ml/min, experimental data); - - - , ideal gradient; -, calculated 
(eqns. 25 and 26). (b) V, = 20 ml, VM/Vo = 0.10; l ,0.5 ml/min; n , 2.0 ml/min; otherwise as in (a). (c} 
V, = 10 ml, VM/VG = 0.20; otherwisesameasin(b). (d) V. = 5 ml, V,/V, = 0.40;-, experimental 
curve, - - -, ideal curve. (e) VG = 2.5 ml, V&f, = 0.80; otherwise as in (d). 
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solvents were then used to form the gradient, with the column replaced by 5 ft. of 
0.01 in. I.D. stainless-steel tubing. Flow-rates were varied from 0.2 to 10 ml/min, and 
gradient times were changed from 5 to 80 min. For other information, see the Ex- 
perimental section of the following paper’ *. 

RESULTS AND DISCUSSION 

A major aim of this study was to compare theory with experiment and to 
examine the effects of non-ideal gradients on measured retention times, t,. In this 
section we shall develop guidelines for avoiding gradient nonideality such that sig- 
nificant changes in t, result. We shall also discuss the correction of experimental t, 
values for such effects. 

Solvent misproportioning and flow-rate errors 
Recent gradient devices featuring low-pressure mixing are generally free from 

major problems with solvent misproportioning. Unlike the high-pressure mixing sys- 
tems of the 1970s (e.g., Chapter 3 in ref. 2), low-pressure systems can provide accurate 
proportioning over the entire gradient range, not just for 0.05 < cp < 0.95. In any 
case, a given gradient system can be tested for the shape of the gradient provided, 
as described under Experimental. Significant problems in solvent misproportioning 
will show up as a ripple on what should be a smooth, continuous curve, or as major 
deviations between the observed and expected gradient. No such problems were en- 
countered with the DuPont 8800 instrument. 

by the 
Once the proper gradient is generated in the mixer, this gradient is delivered 
HPLC pump to the column. Modern pumps provide compressibility correc- 

tions (Chapter 3 in ref. 2) to compensate for this major source of error in pumping 
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Fig. 3. Flow-rate errors for Model 8800 as a function of back-pressure. (a) Back-pressure vs. 9 for runs 
of curve (b), -. , (b) flow-rate error W. cp (THF-water mixtures, 2 ml/min, 25-cm column), 0 exper- 
imental data; (c) flow-rate error at lower back-pressure (same mobile phases, larger-particle column), 
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at high column *back-pressures. However, these corrections are not exact, as illus- 
trated for the present HPLC system in Fig. 3. Here we show the error in flow-rate for 
different values of v,, the volume fraction of THF in THF-water mixtures. The circles 
(b) are the experimental errors found when pumping at 2 ml/min into a 25 x 0.46 
cm I.D. column of 5-pm particles. The solid curve (a) shows the corresponding back- 
pressure on the pump. It is clear that these small errors in flow-rate roughly track 
the column pressure, as theory predicts for errors due to partially compensated com- 
pressibility effects. The dashed curve (cc> shows the pumping errors for a lower back- 
pressure (9-17 bar), created by using a 25 x 0.46 cm I.D. column of 30-ym particles 
(flow-rate 2 ml/min). In the last case (curve c) the error in flow-rate is never greater 
than 0.2%. 

HPLC gradient separations usually involve pressures below 200 bar, and Fig. 
3 suggests that in this case flow-rate errors should be less than 2% absolute. Consider 
next the effect of such pumping errors on gradient retention times, r,. Values of t, 
are given by eqn. 5, which is a function of column dead-time, to. A change in flow- 
rate causes an inversely proportional change in to. In the following paperlZ it is 
shown that an error in to of x min results in an equal error in t, (x min). We can 
define the relative error in t, due to error (6F) in flow-rate as in eqn. 7: 

6~~ = (error in to) Acppltc 
= (-~F/fltoAqh (30) 

For optimized gradient runs in reversed-phase systems’J, tO/tG will be close to a 
value of 0.05, and Aq will be about 1. This means that a 2% error in flow-rate (value 
of -SF/F) will result in an error 6qof equal to about 0.001, i.e., negligible in most 
instances. Further, this maximum error would be reduced by averaging of flow-rate 
errors during the gradient run (see Fig. 3). 

Gradient delay and solute pre-elution 
The gradient delay time, tD, for a given run will be the sum of two contribu- 

tions: (a) the volume of the gradient system vn (beginning with the mixer and ex- 
tending to the column inlet) divided by flow-rate F, plus (b) the delay time td between 
the initiation of the gradient by the operator or microprocessor and the actual re- 
sponse of the gradient system. Thus 

tD = VD/F + td 

The apparent delay volume, I& can then be defined, V’,‘, = tDF, which combines 
with eqn. 31 to give 

v- = v, + tdF (32) 

Experimental values of vn from a given gradient system should agree with values 
from eqn. 32. This is tested in Fig. 4 for the present system; experimental values of 
P’in are plotted against F as circles, and the vertical lines through each point represent 
the variability (1 SD.) of each value (replicate measurements). The straight line is a 
best fit of eqn. 32 to these points, based on t d = 0.05 min. The latter value represents 
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Fig. 4. Measured values of delay volume, Z& as a function of flow-rate. Acetonitrile-water mixtures with 
direct measurement of rp (no column). 

the average delay due to the O-l-min cycle time for the solenoid valves that feed the 
mixer. The extrapolated value of Vg (equal to Vn) at F = 0 can be compared with 
the total volume of the gradient system, as summarized in Table II. The value of Vn 
measured from the geometry of the system is 5.48 ml, in good agreement with a value 
of 5.5 f 0.1 ml from Fig. 4. 

Solute pre-elution. Eqn. 19 or 20 can be used to anticipate significant changes 
in t, as a result of solute pre-elution (partial elution by the volume I’, of starting 
mobile phase). If pre-elution effects are suspected for a given gradient separation, 
sample injection should be repeated at times zero and tD. Any increase in t, for early 
eluting solutes in the latter vs. the former separation is confirmation of solute pre- 
elution when sample is injected at t = 0. 

The effects of sample pre-elution can be eliminated by injecting samples at time 
tD rather than at the time the gradient is started. 

Gradient dispersion 
Gradients produced by the DuPont Model 8800 were measured as described 

TABLE II 

VOLUMES OF ELEMENTS WITHIN DUPONT MODEL 8800 GRADIENT SYSTEM (BETWEEN 
MIXER AND COLUMN INLET) 

Element Volume (ml) Dispersion, E (ml’) 

Mixer 2.15 4.62 
Pump: 

Cylinder 0.06 0.00 
Tubing* 0.84 0.0&0.07* 

Filter 0.40 0.00*** 
Additional 

tubing* 2.03 O.OllO.1 I** 

Total V, =5.48 Vt+, =4.634.81 
(2.15-2.19 ml) 

l Inner diameter 0.030 in. 
l * Varies with flow-rate (0.2 < F < 4.0 ml/min). 

- Packed mixing-vessel; see text. 
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under Experimental and compared with calculated gradient shapes from eqns. 25 
and 26. Values of Vo were varied from 2.5 to 40 ml and the flow-rate was varied 
from 0.5 to 2.0 ml/mm. The value of Yu (5.5 ml) measured in Fig. 4 was assumed, 
and a best fit of cp vs. V to eqns. 25 and 26 gave VM z 2.0 ml. The resulting agreement 
between experimental (points) and calculated (solid curve) gradient shapes is shown 
in Fig. 2ac for V, values of 40, 20 and 10 ml, respectively. In each instance the 
experimental data points fall within experimental error of the calculated curves from 
eqns. 25 and 26. As predicted by theory, the dispersion of the gradient by the system 
was independent of flow-rate, when tG was varied to maintain VG constant (VG = 
t&j. The best-fit value of V, (2.0 ml) from these data can be compared with the 
value estimated from the system mixing elements (Table II), equal to 2.1-2.2 ml. The 
two numbers agree within the probable error of each. 

Efict of gradient dispersion on t,. The effect of gradient dispersion on solute 
retention in gradient elution is illustrated in Fig. 2e. For values of (V - VD)/VG 
between 0.2 and 0.6, the gradient is shifted vertically by an average of 0.10 units in 
cp. Therefore, a solute eluting in this part of the gradient will elute earlier by a time 
equivalent to 0.1 unit in q. That is, a value of &p, = 0.1 unit results in a value of 
6~ = -0.1 unit. More precisely, the value of (p for the solute represents its average 
mobile phase composition during migration along the column, and the corresponding 
value of 69, in Table I for this value of Cp, or the equivalent value of (V - VD)/ VG, 
should then define the error in t, (= - 6~). 

The above discussion argues for the relationship 

scp = -&pm (33) 

However, this conclusion seems less obvious for those parts of the gradient near the 
beginning (V = V,) or the end (V = VG + VD) of the separation, because of severe 
curvature of distorted gradients in these regions. It was therefore of interest to exam- 
ine this question from both a theoretical and an experimental standpoint. Numerical 
integration of model cases, as described in Appendix I, can be used to determine 
values of 8~ and @ for each example. The value of @ and of V,/V, in turn allows 
the determination of SCJJ, from Table I. Generalizing these calculations, we found 
that to a first approximation 

L+ = -1.1 6qp, (34) 

Experimental data for the case of (p 2 0.85 (from the following paper12) are plotted 
in Fig. 5 and compared with eqn. 34 (solid line). These data points fall close to the 
line predicted by eqn. 34, and confirm that eqn. 34 is an adequate approximation for 
determining the error in t, values as a result of gradient dispersion. As discussed in 
the following paper , I* there are other contributions to 6~, as a result of processes 
occurring within the column. However, these are generally minor for the case of (p 
> 0.85, and the good correlation of experimental and calculated data points in Fig. 
5 bears this out. The validity of eqn. 34 is further tested in the following paper12, 
where experimental values of 6q are compared with values calculated from eqn. 7a, 
which takes into account all contributions to error in calculated values of t, from 
eqn. 10. 
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Fig. 5. Correlation of gradient dispersion (Sq,J vs. change in solute retention (69). See text. V,: n , 5; 
0, 10; 0, 16; 7, 20 ml (experimental points); -, best fit to calculated results (Appendix I). 

Evaluation of new gradient systems 
This study has adequately documented the gradient characteristics of the Du- 

Pont Model 8800 instrument. Other systems are expected to differ in the degree of 
gradient distortion, but not in the causes of gradient distortion. This study provides 
a basis for rapidly characterizing any new gradient system in terms of the important 
parameters V, and V,. Once these parameters are known for a given system, it is 
straightforward to predict deviations from ideal gradient shapes as a function of 
separation conditions via Table I. One approach is to calculate VM and Vn as in 
Table II. Another approach is to begin with an estimate of V,, which will generally 
be about equal to the volume of the gradient mixer. Next, two analog gradients are 
run (see Experimental) without a column, so as to display v, vs. time or volume Y; 
values of V,/ VG are selected to equal roughly 0.2 and 0.05. The latter gradient, which 
should show minimal dispersion, is used to determine VD. In principle this latter step 
could be achieved by extrapolating the linear part of the analog gradient to 9 = 0 
(Fig. 2b), but in many instances the linearity of the gradient is deceptive, and this 
procedure leads to error in the estimated value of V,. A better approach is to deter- 
mine the value of the gradient time t for which cp = 0.5 (t&. Then, 

tD = to.5 - o.%, (35) 

Once tD has been determined in this fashion, VD is calculated as t& The value of 
V, can be estimated from the gradient with VM/VG x 0.2 by comparison of the 
gradient with the data in Table I. Specifically, the values of&p, can be measured at 
times tD and tD + to and averaged. This average value is equal to (VM/VG)/2.72, 
provided that VM/VG is not much greater than 0.2 (see Table I). 
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CONCLUSIONS 

In this study we examined differences between actual and intended (ideal) gra- 
dients that result from non-ideality of the gradient system. General relationships were 
derived that allow calculation of mobile phase composition cp vs. gradient volume V 
for actual gradients; linear gradients were specifically considered here, but a similar 
approach can be used for other gradient shapes. Changes in gradient shape were 
considered as a result of (a) solvent misproportioning and flow-rate errors, (b) gra- 
dient delay due to the volume of the system between the mixer and the column inlet 
and (c) gradient distortion due to dispersion of the gradient within the system. Mod- 
ern low-pressure gradient systems as exemplified by the DuPont Model 8800 used 
here will generally not be much affected by errors from solvent misproportioning or 
flow-rate effects. The effect of gradient delay on sample retention in gradient elution 
is easily corrected for, and measurement of the delay volume, Vu, for a particular 
system is straightforward. Gradient dispersion has a more complex effect on exper- 
imental t, values, but these errors can also be corrected for, if the effective mixing 
volume VEn of the system is known. Generally Vu will approximate the volume of 
the gradient mixer, but its exact value can be experimentally determined as described 
here. Thus all effects leading to distortion or displacement of an actual gradient vs. 
the originally intended gradient can be determined for a given case, and the effect of 
these gradient distortions on solute retention t, can be estimated. This allows the 
selection of preferred gradient systems and/or experimental conditions for minimum 
gradient distortion and minimum error in calculated values of lB. Specifically, larger 
values of vo (larger VdUeS of tG and/or F) will give smaller values of V,/VG and 
therefore less gradient dispersion. Similarly, the calculation of isocratic retention data 
from gradient runs as in the following paper12 can be made more precise by limiting 
gradient distortion and/or correcting for its effects. 

We shall examine these effects further in the following paper12, where precise 
predictions of t, values will be shown for systems involving severely non-ideal gra- 
dients. 

APPENDIX I 

Calculation of 6~ as a function of rp and V,/V, 
The effect of gradient distortion on values of t, can be examined for specific 

cases by numerical integration of the fundamental equation for retention in gradient 
elution’ : 

5 
J (dV/V,) = 1 

0 

(AlI 

where Vg is the elution volume of the solute band in a gradient elution run and V, 
is the instantaneous (isocratic) elution volume of the solute as a function of time 
during migration of the band along the column, V is the total volume of mobile 
phase that has passed through the band center at any given time. Eqn. Al is com- 
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pletely general for any gradient shape, and can therefore be applied to the exact 
calculation of t, values, even for very distorted gradients as in Fig. 2c and 2d. 

Solution of eqn. Al was achieved for several representative cases summarized 
in Fig. 5, with b taken equal to 0.3 in each instance. The solid curve in Fig. 5 is the 
best fit to these calculated values of 69 VS. values of 6rp, determined from Table I 
and values of ~$5 calculated from eqn. Al. 
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